Tuesday, May 12, 2020
Exponential Decay Definition and Function
In mathematics, exponential decay describes the process of reducing an amount by a consistent percentage rate over a period of time. It can be expressed by the formula ya(1-b)xà wherein y is the final amount, a is the original amount, b is the decay factor, and x is the amount of time that has passed. The exponential decay formula is useful in a variety of real world applications, most notably for tracking inventory thats used regularly in the same quantity (like food for a school cafeteria) and it is especially useful in its ability to quickly assess the long-term cost of use of a product over time. Exponential decay is different fromà linearà decayà in that the decay factor relies on a percentage of the original amount, which means the actual number the original amount might be reduced by will change over time whereas a linear function decreases the original number by the same amount every time. It is also the opposite of exponential growth, which typically occurs in the stock markets wherein a companys worth will grow exponentially over time before reaching a plateau. You can compare and contrast the differences betweenà exponential growth and decay, but its pretty straightforward: one increases the original amount and the other decreases it. Elements of an Exponentialà Decay Formula To start, its important to recognize the exponential decay formula and be able to identify each of its elements: y a (1-b)x In order to properly understand the utility of the decay formula, it is important to understand how each of the factors is defined, beginning with the phrase decay factorââ¬ârepresented by the letter bà in the exponential decay formulaââ¬âwhich is a percentageà by which the original amount will decline each time. The original amount hereââ¬ârepresented by the letter aà in the formulaââ¬âis the amount before the decay occurs, so if youre thinking about this in a practical sense, the original amount would be the amount of apples a bakery buys and the exponential factor would be the percentage of apples used each hour to make pies. The exponent, which in the case of exponential decay is always time and expressed by the letter x, represents how often the decay occurs and is usually expressed in seconds, minutes, hours, days, or years. An Example of Exponential Decay Use the following example to help understand the concept of exponential decay in a real-world scenario: On Monday, Ledwithââ¬â¢s Cafeteria serves 5,000 customers, but on Tuesday morning, the local news reports that the restaurant fails health inspection and hasââ¬âyikes!ââ¬âviolations related to pest control. Tuesday, the cafeteria serves 2,500 customers. Wednesday, the cafeteria serves only 1,250 customers. Thursday, the cafeteria serves a measly 625 customers. As you can see, the number of customers declined by 50 percentà every day. This type of decline differs from a linear function. In a linear function, the number of customers would decline by the same amount every day. The original amount (a) would be 5,000, the decay factor (b ) would, therefore, be .5 (50 percent written as a decimal), and the value of time (x) would be determined by how many daysà ââ¬â¹Ledwith wants to predict the results for. If Ledwith were to ask about how many customers he would lose in five days if the trend continued, his accountant could find the solution by plugging all of the above numbers into the exponential decay formula to get the following: ââ¬â¹ y 5000(1-.5)5 The solution comes out to 312 and a half, but since you cant have a half customer, the accountant would round the number up to 313 and be able to say that in five days, Ledwith could expect to lose another 313 customers!
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.